import numpy as np
from echoes import *
import math, random
=8, suppress=True)
np.set_printoptions(precision# to display only 8 significant digits of array components
1 Kelvin-Mandel notation
A symmetric \(3×3\) second-order matrix can be transformed in a vector of \(\R^6\) by the function KM
consistently with (A.14). The inverse is done by invKM
.
= np.random.rand(3, 3) ; ε = (α+α.T)/2
α print("ε =\n",ε)
print("KM(ε) =\n",KM(ε))
assert np.allclose(invKM(KM(ε)), ε), "error"
ε =
[[0.68926093 0.38749989 0.07905665]
[0.38749989 0.73063341 0.79515912]
[0.07905665 0.79515912 0.25769377]]
KM(ε) =
[0.68926093 0.73063341 0.25769377 1.12452481 0.11180298 0.5480076 ]
Given a \(3×3×3×3\) array c
(of type numpy.ndarray
) satisfying major and minor symmetries (see Section A.2), the corresponding \(6×6\) matrix C
obtained by Kelvin-Mandel transform is calculated by C = KM(c)
. Conversely, if C
is a positive definite matrix, c
is calculated by c = invKM(C)
.
= np.random.rand(6,6)
A = A.T.dot(A) + np.eye(6) # generation of an arbitrary positive definite matrix
C = invKM(C)
c print("C =\n",C)
print("c =\n",c)
assert np.allclose(KM(c), C), "error: KM(c) should be equal to C"
C =
[[3.39924889 2.61561741 1.68906414 1.6082464 2.37004987 1.96310658]
[2.61561741 4.93763362 2.45114019 2.03665861 2.86213159 2.91525212]
[1.68906414 2.45114019 2.71242505 1.23348354 2.05770511 1.61612909]
[1.6082464 2.03665861 1.23348354 2.33178588 1.52670798 1.52328004]
[2.37004987 2.86213159 2.05770511 1.52670798 3.80606145 1.85934243]
[1.96310658 2.91525212 1.61612909 1.52328004 1.85934243 3.46582955]]
c =
[[[[3.39924889 1.38812598 1.67587834]
[1.38812598 2.61561741 1.13720193]
[1.67587834 1.13720193 1.68906414]]
[[1.38812598 1.73291477 0.92967122]
[1.73291477 2.06139455 0.76164002]
[0.92967122 0.76164002 1.14277584]]
[[1.67587834 0.92967122 1.90303072]
[0.92967122 2.02383266 0.76335399]
[1.90303072 0.76335399 1.45501724]]]
[[[1.38812598 1.73291477 0.92967122]
[1.73291477 2.06139455 0.76164002]
[0.92967122 0.76164002 1.14277584]]
[[2.61561741 2.06139455 2.02383266]
[2.06139455 4.93763362 1.44013512]
[2.02383266 1.44013512 2.45114019]]
[[1.13720193 0.76164002 0.76335399]
[0.76164002 1.44013512 1.16589294]
[0.76335399 1.16589294 0.87220458]]]
[[[1.67587834 0.92967122 1.90303072]
[0.92967122 2.02383266 0.76335399]
[1.90303072 0.76335399 1.45501724]]
[[1.13720193 0.76164002 0.76335399]
[0.76164002 1.44013512 1.16589294]
[0.76335399 1.16589294 0.87220458]]
[[1.68906414 1.14277584 1.45501724]
[1.14277584 2.45114019 0.87220458]
[1.45501724 0.87220458 2.71242505]]]]
\(\,\)