References
Abramowitz, M., Stegun, I.A., 1972. Handbook of Mathematical
Functions. National Bureau of Standards - Applied
Mathematics Series - 55, Washington D.C.
Barthélémy, Jean-François, 2022. Echoes: Extended
Calculator of HOmogEnization Schemes. https://doi.org/10.5281/ZENODO.7348759
Barthélémy, J.-F., 2020. Simplified approach to the derivation of the
relationship between Hill polarization tensors of
transformed problems and applications. International Journal of
Engineering Science 154, 103326. https://doi.org/10.1016/j.ijengsci.2020.103326
Barthélémy, J.-F., 2009. Compliance and Hill polarization
tensor of a crack in an anisotropic matrix. International Journal of
Solids and Structures 46, 4064–4072. https://doi.org/10.1016/j.ijsolstr.2009.08.003
Barthélémy, J.-F., Sevostianov, I., Giraud, A., 2021. Micromechanical
modeling of a cracked elliptically orthotropic medium. International
Journal of Engineering Science 161, 103454. https://doi.org/10.1016/j.ijengsci.2021.103454
Bornert, M., Bretheau, T., Gilormini, P., 2001. Homogénéisation en
mécanique des matériaux. Hermes science.
Brisard, S., 2014. Tensor algebra section in Sébastien
Brisard’s blog.
Dormieux, L., Kondo, D., Ulm, F.-J., 2006. Microporomechanics.
John Wiley & Sons, Chichester, West Sussex,
England ; Hoboken, NJ. https://doi.org/10.1002/0470032006
Eshelby, J.D., 1957. The determination of the elastic field of an
ellipsoidal inclusion, and related problems. Proceedings of the Royal
Society of London. Series A. Mathematical and Physical Sciences 241,
376–396. https://doi.org/10.1098/rspa.1957.0133
Gavazzi, A.C., Lagoudas, D.C., 1990. On the numerical evaluation of
Eshelby’s tensor and its application to elastoplastic
fibrous composites. Computational Mechanics 7, 13–19. https://doi.org/10.1007/BF00370053
Ghahremani, F., 1977. Numerical evaluation of the stresses and strains
in ellipsoidal inclusions in an anisotropic elastic material. Mechanics
Research Communications 4, 89–91. https://doi.org/10.1016/0093-6413(77)90018-0
Kachanov, M., Sevostianov, I., 2018. Micromechanics of
Materials, with Applications, Solid
Mechanics and Its Applications. Springer
International Publishing, Cham. https://doi.org/10.1007/978-3-319-76204-3
Kellogg, O.D., 1929. Potential theory. Berlin :
Springer-Verlag.
Masson, R., 2008. New explicit expressions of the Hill
polarization tensor for general anisotropic elastic solids.
International Journal of Solids and Structures 45, 757–769. https://doi.org/10.1016/j.ijsolstr.2007.08.035
Milton, G.W., 2002. The Theory of Composites,
Cambridge Monographs on Applied and
Computational Mathematics. Cambridge University
Press, Cambridge. https://doi.org/10.1017/CBO9780511613357
Morin, L., Gilormini, P., Derrien, K., 2020. Generalized Euclidean
Distances for Elasticity Tensors. Journal of
Elasticity 138, 221–232. https://doi.org/10.1007/s10659-019-09741-z
Mura, T., 1987. Micromechanics of Defects in
Solids, Second Edition. Kluwer
Academic. https://doi.org/10.1002/zamm.19890690204
Torquato, S., 2002. Random Heterogeneous Materials,
Interdisciplinary Applied Mathematics. Springer New
York, New York, NY. https://doi.org/10.1007/978-1-4757-6355-3
Walpole, L.J., 1984. Fourth-rank tensors of the thirty-two crystal
classes: Multiplication tables. Proceedings of the Royal Society of
London. A. Mathematical and Physical Sciences 391, 149–179. https://doi.org/10.1098/rspa.1984.0008
Willis, J.R., 1977. Bounds and self-consistent estimates for the overall
properties of anisotropic composites. Journal of the Mechanics and
Physics of Solids 25, 185–202. https://doi.org/10.1016/0022-5096(77)90022-9
Withers, P.J., 1989. The determination of the elastic field of an
ellipsoidal inclusion in a transversely isotropic medium, and its
relevance to composite materials. Philosophical Magazine A 59, 759–781.
https://doi.org/10.1080/01418618908209819
\(\,\)