References
Abramowitz, M., Stegun, I.A., 1972. Handbook of Mathematical
Functions. National Bureau of Standards - Applied Mathematics
Series - 55, Washington D.C.
Barthélémy, J.-F., 2022. Echoes: Extended Calculator of
HOmogEnization Schemes. https://doi.org/10.5281/ZENODO.14959866
Barthélémy, J.-F., 2020. Simplified approach to the derivation of the
relationship between Hill polarization tensors of
transformed problems and applications. International Journal of
Engineering Science 154, 103326. https://doi.org/10.1016/j.ijengsci.2020.103326
Barthélémy, J.-F., 2009a. Compliance and Hill polarization
tensor of a crack in an anisotropic matrix. International Journal of
Solids and Structures 46, 4064–4072. https://doi.org/10.1016/j.ijsolstr.2009.08.003
Barthélémy, J.-F., 2009b. Effective Permeability of
Media with a Dense Network of
Long and Micro Fractures. Transport in Porous
Media 76, 153–178. https://doi.org/10.1007/s11242-008-9241-9
Barthélémy, J.-F., Giraud, A., Lavergne, F., Sanahuja, J., 2016. The
Eshelby inclusion problem in ageing linear viscoelasticity.
Int. J. Solids Struct. 97–98, 530–542. https://doi.org/10.1016/j.ijsolstr.2016.06.035
Barthélémy, J.-F., Sevostianov, I., Giraud, A., 2021. Micromechanical
modeling of a cracked elliptically orthotropic medium. International
Journal of Engineering Science 161, 103454. https://doi.org/10.1016/j.ijengsci.2021.103454
Bornert, M., Bretheau, T., Gilormini, P., 2001. Homogénéisation en
mécanique des matériaux. Hermes science.
Brisard, S., 2014. Tensor algebra section in Sébastien
Brisard’s blog [WWW Document]. URL https://sbrisard.github.io/category/tensor-algebra.html
Dormieux, L., Kondo, D., Ulm, F.-J., 2006. Microporomechanics. John
Wiley & Sons, Chichester, West Sussex, England ; Hoboken, NJ. https://doi.org/10.1002/0470032006
Eshelby, J.D., 1957. The determination of the elastic field of an
ellipsoidal inclusion, and related problems. Proceedings of the Royal
Society of London. Series A. Mathematical and Physical Sciences 241,
376–396. https://doi.org/10.1098/rspa.1957.0133
Espelid, T.O., Genz, A., 1994. DECUHR: An algorithm for
automatic integration of singular functions over a hyperrectangular
region. Numerical Algorithms 8, 201–220. https://doi.org/10.1007/BF02142691
Gavazzi, A.C., Lagoudas, D.C., 1990. On the numerical evaluation of
Eshelby’s tensor and its application to elastoplastic
fibrous composites. Computational Mechanics 7, 13–19. https://doi.org/10.1007/BF00370053
Ghahremani, F., 1977. Numerical evaluation of the stresses and strains
in ellipsoidal inclusions in an anisotropic elastic material. Mechanics
Research Communications 4, 89–91. https://doi.org/10.1016/0093-6413(77)90018-0
Giraud, A., Sevostianov, I., Kushch, V.I., Cosenza, P., Prêt, D.,
Barthélémy, J.-F., Trofimov, A., 2019. Effective electrical conductivity
of transversely isotropic rocks with arbitrarily oriented ellipsoidal
inclusions. Mechanics of Materials 133, 174–192. https://doi.org/10.1016/j.mechmat.2019.03.011
Kachanov, M., 1993. Elastic Solids with Many
Cracks and Related Problems. Advances in Applied
Mechanics 30, 259–445. https://doi.org/10.1016/S0065-2156(08)70176-5
Kachanov, M., 1992. Effective Elastic Properties of
Cracked Solids: Critical Review of Some
Basic Concepts. Applied Mechanics Reviews 45, 304–335. https://doi.org/10.1115/1.3119761
Kachanov, M., Sevostianov, I., 2018. Micromechanics of
Materials, with Applications, Solid
Mechanics and Its Applications. Springer
International Publishing, Cham. https://doi.org/10.1007/978-3-319-76204-3
Kellogg, O.D., 1929. Potential theory. Berlin : Springer-Verlag.
Laws, N., 1985. A short note on penny-shaped cracks in transversely
isotropic materials. Mech. Mater. 4, 209–212.
Laws, N., 1977. A note on interaction energies associated with cracks in
anisotropic solids. Philos. Magazine 36, 367–372.
Masson, R., 2008. New explicit expressions of the Hill
polarization tensor for general anisotropic elastic solids.
International Journal of Solids and Structures 45, 757–769. https://doi.org/10.1016/j.ijsolstr.2007.08.035
Milton, G.W., 2002. The Theory of Composites,
Cambridge Monographs on Applied and
Computational Mathematics. Cambridge University Press,
Cambridge. https://doi.org/10.1017/CBO9780511613357
Morin, L., Gilormini, P., Derrien, K., 2020. Generalized Euclidean
Distances for Elasticity Tensors. Journal of
Elasticity 138, 221–232. https://doi.org/10.1007/s10659-019-09741-z
Mura, T., 1987. Micromechanics of Defects in
Solids, Second Edition. Kluwer Academic. https://doi.org/10.1002/zamm.19890690204
Nemat-Nasser, S., Hori, M., 1999. Micromechanics: Overall
Properties of Heterogeneous Materials 2nd
Edition, North Holland. ed. North Holland, Amsterdam, The
Netherlands.
Parnell, W.J., 2016. The Eshelby, Hill,
Moment and Concentration Tensors for
Ellipsoidal Inhomogeneities in the Newtonian
Potential Problem and Linear Elastostatics. Journal
of Elasticity 125, 231–294. https://doi.org/10.1007/s10659-016-9573-6
Pouya, A., 2000. Une transformation du problème d’élasticité linéaire en
vue d’application au problème de l’inclusion et aux fonctions de
Green. C. R. Acad. Sci., Série IIb 328, 437–443.
Pouya, A., Zaoui, A., 2006. A transformation of elastic boundary value
problems with application to anisotropic behavior. Int. J. Solids
Struct. 43, 4937–4956. https://doi.org/10.1016/j.ijsolstr.2005.06.046
Sevostianov, I., Kachanov, M., 2002. On elastic compliances of
irregularly shaped cracks. International Journal of Fracture 114,
245–257. https://doi.org/10.1023/A:1015534127172
Suvorov, A.P., Dvorak, G.J., 2002. Rate form of the Eshelby
and Hill tensors. International Journal of Solids and
Structures 39, 5659–5678. https://doi.org/10.1016/S0020-7683(02)00369-4
Torquato, S., 2002. Random Heterogeneous Materials,
Interdisciplinary Applied Mathematics. Springer New York,
New York, NY. https://doi.org/10.1007/978-1-4757-6355-3
Walpole, L.J., 1984. Fourth-rank tensors of the thirty-two crystal
classes: Multiplication tables. Proceedings of the Royal Society of
London. A. Mathematical and Physical Sciences 391, 149–179. https://doi.org/10.1098/rspa.1984.0008
Willis, J.R., 1977. Bounds and self-consistent estimates for the overall
properties of anisotropic composites. Journal of the Mechanics and
Physics of Solids 25, 185–202. https://doi.org/10.1016/0022-5096(77)90022-9
Withers, P.J., 1989. The determination of the elastic field of an
ellipsoidal inclusion in a transversely isotropic medium, and its
relevance to composite materials. Philosophical Magazine A 59, 759–781.
https://doi.org/10.1080/01418618908209819
\(\,\)