$$ \newcommand{\C}{{\mathbb{{C}}}} \newcommand{\R}{{\mathbb{{R}}}} \newcommand{\Q}{{\mathbb{{Q}}}} \newcommand{\Z}{{\mathbb{{Z}}}} \newcommand{\N}{{\mathbb{{N}}}} \newcommand{\uu}[1]{{\boldsymbol{{#1}}}} \newcommand{\uuuu}[1]{{\symbb{{#1}}}} \newcommand{\uv}[1]{{\underline{{#1}}}} \newcommand{\ve}[1]{{\uv{{e}}_{{#1}}}} \newcommand{\x}{{\uv{{x}}}} \newcommand{\n}{{\uv{{n}}}} \newcommand{\eps}{{\uu{{\varepsilon}}}} \newcommand{\E}{{\uu{{E}}}} \newcommand{\sig}{{\uu{{\sigma}}}} \newcommand{\Sig}{{\uu{{\Sigma}}}} \newcommand{\cod}{{\uv{{\symscr{b}}}}} \newcommand{\trans}[1]{{{}^{t}{#1}}} \newcommand{\sotimes}{{\stackrel{s}{\otimes}}} \newcommand{\sboxtimes}{\stackrel{s}{\boxtimes}} \newcommand{\norm}[1]{{\lVert{{#1}}\rVert}} \newcommand{\ud}{{\,\mathrm{d}}} \newcommand{\mat}{\mathsf} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\divz}{div} \DeclareMathOperator{\divu}{\uv{div}} \DeclareMathOperator{\hess}{hess} \DeclareMathOperator{\gradu}{\uv{grad}} \DeclareMathOperator{\graduu}{\uu{grad}} \DeclareMathOperator{\Mat}{Mat} \DeclareMathOperator{\tr}{tr} \DeclareMathOperator{\ISO}{ISO} \newcommand{\jump}[1]{[\hspace*{-.15em}[\hspace*{.1em}{#1}% \hspace*{.1em}]\hspace*{-.15em}]} $$

References

Abramowitz, M., Stegun, I.A., 1972. Handbook of Mathematical Functions. National Bureau of Standards - Applied Mathematics Series - 55, Washington D.C.
Barthélémy, J.-F., 2022. Echoes: Extended Calculator of HOmogEnization Schemes. https://doi.org/10.5281/ZENODO.14959866
Barthélémy, J.-F., 2020. Simplified approach to the derivation of the relationship between Hill polarization tensors of transformed problems and applications. International Journal of Engineering Science 154, 103326. https://doi.org/10.1016/j.ijengsci.2020.103326
Barthélémy, J.-F., 2009a. Compliance and Hill polarization tensor of a crack in an anisotropic matrix. International Journal of Solids and Structures 46, 4064–4072. https://doi.org/10.1016/j.ijsolstr.2009.08.003
Barthélémy, J.-F., 2009b. Effective Permeability of Media with a Dense Network of Long and Micro Fractures. Transport in Porous Media 76, 153–178. https://doi.org/10.1007/s11242-008-9241-9
Barthélémy, J.-F., Giraud, A., Lavergne, F., Sanahuja, J., 2016. The Eshelby inclusion problem in ageing linear viscoelasticity. Int. J. Solids Struct. 97–98, 530–542. https://doi.org/10.1016/j.ijsolstr.2016.06.035
Barthélémy, J.-F., Sevostianov, I., Giraud, A., 2021. Micromechanical modeling of a cracked elliptically orthotropic medium. International Journal of Engineering Science 161, 103454. https://doi.org/10.1016/j.ijengsci.2021.103454
Bornert, M., Bretheau, T., Gilormini, P., 2001. Homogénéisation en mécanique des matériaux. Hermes science.
Brisard, S., 2014. Tensor algebra section in Sébastien Brisard’s blog [WWW Document]. URL https://sbrisard.github.io/category/tensor-algebra.html
Dormieux, L., Kondo, D., Ulm, F.-J., 2006. Microporomechanics. John Wiley & Sons, Chichester, West Sussex, England ; Hoboken, NJ. https://doi.org/10.1002/0470032006
Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 241, 376–396. https://doi.org/10.1098/rspa.1957.0133
Espelid, T.O., Genz, A., 1994. DECUHR: An algorithm for automatic integration of singular functions over a hyperrectangular region. Numerical Algorithms 8, 201–220. https://doi.org/10.1007/BF02142691
Gavazzi, A.C., Lagoudas, D.C., 1990. On the numerical evaluation of Eshelby’s tensor and its application to elastoplastic fibrous composites. Computational Mechanics 7, 13–19. https://doi.org/10.1007/BF00370053
Ghahremani, F., 1977. Numerical evaluation of the stresses and strains in ellipsoidal inclusions in an anisotropic elastic material. Mechanics Research Communications 4, 89–91. https://doi.org/10.1016/0093-6413(77)90018-0
Giraud, A., Sevostianov, I., Kushch, V.I., Cosenza, P., Prêt, D., Barthélémy, J.-F., Trofimov, A., 2019. Effective electrical conductivity of transversely isotropic rocks with arbitrarily oriented ellipsoidal inclusions. Mechanics of Materials 133, 174–192. https://doi.org/10.1016/j.mechmat.2019.03.011
Kachanov, M., 1993. Elastic Solids with Many Cracks and Related Problems. Advances in Applied Mechanics 30, 259–445. https://doi.org/10.1016/S0065-2156(08)70176-5
Kachanov, M., 1992. Effective Elastic Properties of Cracked Solids: Critical Review of Some Basic Concepts. Applied Mechanics Reviews 45, 304–335. https://doi.org/10.1115/1.3119761
Kachanov, M., Sevostianov, I., 2018. Micromechanics of Materials, with Applications, Solid Mechanics and Its Applications. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-76204-3
Kellogg, O.D., 1929. Potential theory. Berlin : Springer-Verlag.
Laws, N., 1985. A short note on penny-shaped cracks in transversely isotropic materials. Mech. Mater. 4, 209–212.
Laws, N., 1977. A note on interaction energies associated with cracks in anisotropic solids. Philos. Magazine 36, 367–372.
Masson, R., 2008. New explicit expressions of the Hill polarization tensor for general anisotropic elastic solids. International Journal of Solids and Structures 45, 757–769. https://doi.org/10.1016/j.ijsolstr.2007.08.035
Milton, G.W., 2002. The Theory of Composites, Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511613357
Morin, L., Gilormini, P., Derrien, K., 2020. Generalized Euclidean Distances for Elasticity Tensors. Journal of Elasticity 138, 221–232. https://doi.org/10.1007/s10659-019-09741-z
Mura, T., 1987. Micromechanics of Defects in Solids, Second Edition. Kluwer Academic. https://doi.org/10.1002/zamm.19890690204
Nemat-Nasser, S., Hori, M., 1999. Micromechanics: Overall Properties of Heterogeneous Materials 2nd Edition, North Holland. ed. North Holland, Amsterdam, The Netherlands.
Parnell, W.J., 2016. The Eshelby, Hill, Moment and Concentration Tensors for Ellipsoidal Inhomogeneities in the Newtonian Potential Problem and Linear Elastostatics. Journal of Elasticity 125, 231–294. https://doi.org/10.1007/s10659-016-9573-6
Pouya, A., 2000. Une transformation du problème d’élasticité linéaire en vue d’application au problème de l’inclusion et aux fonctions de Green. C. R. Acad. Sci., Série IIb 328, 437–443.
Pouya, A., Zaoui, A., 2006. A transformation of elastic boundary value problems with application to anisotropic behavior. Int. J. Solids Struct. 43, 4937–4956. https://doi.org/10.1016/j.ijsolstr.2005.06.046
Sevostianov, I., Kachanov, M., 2002. On elastic compliances of irregularly shaped cracks. International Journal of Fracture 114, 245–257. https://doi.org/10.1023/A:1015534127172
Suvorov, A.P., Dvorak, G.J., 2002. Rate form of the Eshelby and Hill tensors. International Journal of Solids and Structures 39, 5659–5678. https://doi.org/10.1016/S0020-7683(02)00369-4
Torquato, S., 2002. Random Heterogeneous Materials, Interdisciplinary Applied Mathematics. Springer New York, New York, NY. https://doi.org/10.1007/978-1-4757-6355-3
Walpole, L.J., 1984. Fourth-rank tensors of the thirty-two crystal classes: Multiplication tables. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 391, 149–179. https://doi.org/10.1098/rspa.1984.0008
Willis, J.R., 1977. Bounds and self-consistent estimates for the overall properties of anisotropic composites. Journal of the Mechanics and Physics of Solids 25, 185–202. https://doi.org/10.1016/0022-5096(77)90022-9
Withers, P.J., 1989. The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials. Philosophical Magazine A 59, 759–781. https://doi.org/10.1080/01418618908209819

\(\,\)