$$ \newcommand{\C}{{\mathbb{{C}}}} \newcommand{\R}{{\mathbb{{R}}}} \newcommand{\Q}{{\mathbb{{Q}}}} \newcommand{\Z}{{\mathbb{{Z}}}} \newcommand{\N}{{\mathbb{{N}}}} \newcommand{\uu}[1]{{\boldsymbol{{#1}}}} \newcommand{\uuuu}[1]{{\symbb{{#1}}}} \newcommand{\uv}[1]{{\underline{{#1}}}} \newcommand{\ve}[1]{{\uv{{e}}_{{#1}}}} \newcommand{\x}{{\uv{{x}}}} \newcommand{\n}{{\uv{{n}}}} \newcommand{\eps}{{\uu{{\varepsilon}}}} \newcommand{\E}{{\uu{{E}}}} \newcommand{\sig}{{\uu{{\sigma}}}} \newcommand{\Sig}{{\uu{{\Sigma}}}} \newcommand{\cod}{{\uv{{\symscr{b}}}}} \newcommand{\trans}[1]{{{}^{t}{#1}}} \newcommand{\sotimes}{{\stackrel{s}{\otimes}}} \newcommand{\sboxtimes}{\stackrel{s}{\boxtimes}} \newcommand{\norm}[1]{{\lVert{{#1}}\rVert}} \newcommand{\ud}{{\,\mathrm{d}}} \newcommand{\mat}{\mathsf} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\divz}{div} \DeclareMathOperator{\divu}{\uv{div}} \DeclareMathOperator{\hess}{hess} \DeclareMathOperator{\gradu}{\uv{grad}} \DeclareMathOperator{\graduu}{\uu{grad}} \DeclareMathOperator{\Mat}{Mat} \DeclareMathOperator{\tr}{tr} \DeclareMathOperator{\ISO}{ISO} \newcommand{\jump}[1]{[\hspace*{-.15em}[\hspace*{.1em}{#1}% \hspace*{.1em}]\hspace*{-.15em}]} $$

2  Rotation matrices

Objectives

This tutorial presents the construction of rotation matrices in \(\R^3\) in the convention proposed in Section A.3 for Euler angles.

import numpy as np
from echoes import *
import math, random

np.set_printoptions(precision=8, suppress=True)
# to display only 8 significant digits of array components

Given the Euler angles θ, ϕ, ψ defined in Section A.3 and more particularly in Fig. A.1, the rotation matrix (A.19) recalled here \[ \small \mat{R}= \left( \begin{array}{ccc} c_\theta c_\psi c_\phi - s_\psi s_\phi & - c_\theta c_\phi s_\psi - c_\psi s_\phi & c_\phi s_\theta \\ c_\theta c_\psi s_\phi + c_\phi s_\psi & - c_\theta s_\psi s_\phi + c_\psi c_\phi & s_\theta s_\phi \\ - c_\psi s_\theta & s_\theta s_\psi & c_\theta \\ \end{array} \right) \]

can be built with rot3(θ, ϕ, ψ)

π = math.pi
θ, ϕ, ψ = π/3, π/4, π/5
R = rot3(θ, ϕ, ψ)
print("R =\n",R)
R =
 [[-0.12959624 -0.77987487  0.61237244]
 [ 0.70165764  0.36424793  0.61237244]
 [-0.70062927  0.50903696  0.5       ]]

The vectors of the spherical basis correspond to the column of the rotation matrix for \(\psi=0\). They can individually be obtained by the function es(i, θ, ϕ)

Warning

Python numbering starts at 0 so i takes the values 0, 1 and 2.

Besides vectors of the spherical basis are ordered as \(\ve{\theta}\), \(\ve{\phi}\), \(\ve{r}\).

θ, ϕ = π/8, π/5
R = rot3(θ, ϕ)
print("R =\n",R)
for i in range(3): print(f"es({i}, θ, ϕ) = ", es(i, θ, ϕ), f" → e̱{['θ','ϕ','r'][i]}")
R =
 [[ 0.74743424 -0.58778525  0.3095974 ]
 [ 0.54304276  0.80901699  0.22493568]
 [-0.38268343  0.          0.92387953]]
es(0, θ, ϕ) =  [ 0.74743424  0.54304276 -0.38268343]  → e̱θ
es(1, θ, ϕ) =  [-0.58778525  0.80901699  0.        ]  → e̱ϕ
es(2, θ, ϕ) =  [0.3095974  0.22493568 0.92387953]  → e̱r

As shown in Section A.3 the rotation matrix applying on fourth-order tensors in Kelvin-Mandel notation can be deduced from the \(3×3\) rotation matrix from (A.24) \[ \scriptsize \left( \begin{array}{cccccc} R_{1 1}^{2} & R_{1 2}^{2} & R_{1 3}^{2} & \sqrt{2} R_{1 2} R_{1 3} & \sqrt{2} R_{1 1} R_{1 3} & \sqrt{2} R_{1 1} R_{1 2} \\ R_{2 1}^{2} & R_{2 2}^{2} & R_{2 3}^{2} & \sqrt{2} R_{2 2} R_{2 3} & \sqrt{2} R_{2 1} R_{2 3} & \sqrt{2} R_{2 1} R_{2 2} \\ R_{3 1}^{2} & R_{3 2}^{2} & R_{3 3}^{2} & \sqrt{2} R_{3 2} R_{3 3} & \sqrt{2} R_{3 1} R_{3 3} & \sqrt{2} R_{3 1} R_{3 2} \\ \sqrt{2} R_{2 1} R_{3 1} & \sqrt{2} R_{2 2} R_{3 2} & \sqrt{2} R_{2 3} R_{3 3} & R_{2 2} R_{3 3} + R_{2 3} R_{3 2} & R_{2 1} R_{3 3} + R_{2 3} R_{3 1} & R_{2 1} R_{3 2} + R_{2 2} R_{3 1} \\ \sqrt{2} R_{1 1} R_{3 1} & \sqrt{2} R_{1 2} R_{3 2} & \sqrt{2} R_{1 3} R_{3 3} & R_{1 2} R_{3 3} + R_{1 3} R_{3 2} & R_{1 1} R_{3 3} + R_{1 3} R_{3 1} & R_{1 1} R_{3 2} + R_{1 2} R_{3 1} \\ \sqrt{2} R_{1 1} R_{2 1} & \sqrt{2} R_{1 2} R_{2 2} & \sqrt{2} R_{1 3} R_{2 3} & R_{1 2} R_{2 3} + R_{1 3} R_{2 2} & R_{1 1} R_{2 3} + R_{1 3} R_{2 1} & R_{1 1} R_{2 2} + R_{1 2} R_{2 1} \\ \end{array} \right) \]

It can be directly obtained by rot6(θ, ϕ, ψ).

θ, ϕ, ψ = π/3, π/4, π/5
R = rot3(θ, ϕ, ψ)
sboxtimes=lambda a,b:0.5*(np.einsum('ik,jl',a,b)+np.einsum('il,jk',a,b))
print("R⊠ˢR =\n",KM(sboxtimes(R,R)))

= rot6(θ, ϕ, ψ)
print("ℝ =\n",ℝ)
R⊠ˢR =
 [[ 0.01679518  0.60820482  0.375      -0.67539145 -0.11223363  0.14293294]
 [ 0.49232344  0.13267656  0.375       0.31544796  0.60765334  0.36144095]
 [ 0.49088137  0.25911863  0.25        0.35994349 -0.49541971 -0.50437388]
 [-0.69523004  0.26221734  0.4330127   0.49384417 -0.07821723  0.10196691]
 [ 0.12840906 -0.56142176  0.4330127  -0.07821723 -0.49384417  0.48043389]
 [-0.12859754 -0.40173255  0.53033009 -0.25451848  0.35031463 -0.59441032]]
ℝ =
 [[ 0.01679518  0.60820482  0.375      -0.67539145 -0.11223363  0.14293294]
 [ 0.49232344  0.13267656  0.375       0.31544796  0.60765334  0.36144095]
 [ 0.49088137  0.25911863  0.25        0.35994349 -0.49541971 -0.50437388]
 [-0.69523004  0.26221734  0.4330127   0.49384417 -0.07821723  0.10196691]
 [ 0.12840906 -0.56142176  0.4330127  -0.07821723 -0.49384417  0.48043389]
 [-0.12859754 -0.40173255  0.53033009 -0.25451848  0.35031463 -0.59441032]]

\(\,\)